Research in our lab focuses on a non-canonical autophagy pathway, associated with CASM (conjugation of ATG8 to single-membranes), and its role in lysosomal biology. We aim to understand the molecular mechanisms underlying the regulation and function of this pathway in cellular processes such as cell stress responses and infection.
Our work exploits a combination of molecular and cellular biology, state-of-the-art microscopy (long-term time-lapse imaging, spinning disk confocal and electron microscopy) and proteomics (mass spectrometry).
Existing projects aim to define the molecular mechanisms which underlie non-canonical autophagy, and exploring the potential to manipulate the pathway for therapeutic benefit.
Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, , changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.
Cells harness multiple pathways to maintain lysosome integrity, a central homeostatic process. Damaged lysosomes can be repaired or targeted for degradation by lysophagy, a selective autophagy process involving ATG8/LC3. Here, we describe a parallel ATG8/LC3 response to lysosome damage, mechanistically distinct from lysophagy. Using a comprehensive series of biochemical, pharmacological, and genetic approaches, we show that lysosome damage induces non-canonical autophagy and Conjugation of ATG8s to Single Membranes (CASM). Following damage, ATG8s are rapidly and directly conjugated onto lysosome membranes, independently of ATG13/WIPI2, lipidating to PS (and PE), a molecular hallmark of CASM. Lysosome damage drives V-ATPase V0-V1 association, direct recruitment of ATG16L1 via its WD40-domain/K490A, and is sensitive to Salmonella SopF. Lysosome damage-induced CASM is associated with formation of dynamic, LC3A-positive tubules, and promotes robust LC3A engagement with ATG2, a lipid transfer protein central to lysosome repair. Together, our data identify direct ATG8 conjugation as a rapid response to lysosome damage, with important links to lipid transfer and dynamics.
Maintaining the integrity of the endolysosomal system is of great importance for聽cellular homeostasis. Recent work published in The EMBO Journal and EMBO Reports reveals a novel role for the protein TECPR1 as a sensor for stressed membranes and regulator of lysosomal membrane repair.