果酱视频

 

Filter

Publications

The Babraham 果酱视频 Publications database contains details of all publications resulting from our research groups and  Pre-prints by 果酱视频 authors can be viewed on the 果酱视频's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
Suire S, Baltanas FC, Segonds-Pichon A, Davidson K, Santos E, Hawkins PT, Stephens LR Signalling,Bioinformatics

Circulating neutrophils are, by necessity, quiescent and relatively unresponsive to acute stimuli. In regions of inflammation, mediators can prime neutrophils to react to acute stimuli with stronger proinflammatory, pathogen-killing responses. In neutrophils G protein-coupled receptor (GPCR)-driven proinflammatory responses, such as reactive oxygen species (ROS) formation and accumulation of the key intracellular messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP ), are highly dependent on PI3K-纬, a Ras-GTP, and G尾纬 coincidence detector. In unprimed cells, the major GPCR-triggered activator of Ras is the Ras guanine nucleotide exchange factor (GEF), Ras guanine nucleotide releasing protein 4 (RasGRP4). Although priming is known to increase GPCR-PIP signaling, the mechanisms underlying this augmentation remain unclear. We used genetically modified mice to address the role of the 2 RasGEFs, RasGRP4 and son of sevenless (SOS)1/2, in neutrophil priming. We found that following GM-CSF/TNF伪 priming, RasGRP4 had only a minor role in the enhanced responses. In contrast, SOS1/2 acquired a substantial role in ROS formation, PIP accumulation, and ERK activation in primed cells. These results suggest that SOS1/2 signaling plays a key role in determining the responsiveness of neutrophils in regions of inflammation.

+view abstract Journal of leukocyte biology, PMID: 30720883 2019

Open Access
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A Epigenetics

R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression聽at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment.

+view abstract Molecular cell, PMID: 30709709

Chellappa S, Kushekhar K, Munthe LA, Tj酶nnfjord GE, Aandahl EM, Okkenhaug K, Task茅n K

In chronic lymphocytic leukemia (CLL), signaling through several prosurvival B cell surface receptors activates the PI3K signaling pathway. Idelalisib is a highly selective PI3K (PI3K未) isoform-specific inhibitor effective in relapsed/refractory CLL and follicular lymphoma. However, severe autoimmune adverse effects in association with the use of idelalisib in the treatment of CLL, particularly as a first-line therapy, gave indications that idelalisib may preferentially target the suppressive function of regulatory T cells (Tregs). On this background, we examined the effect of idelalisib on the function of human Tregs ex vivo with respect to proliferation, TCR signaling, phenotype, and suppressive function. Our results show that human Tregs are highly susceptible to PI3K未 inactivation using idelalisib compared with CD4 and CD8 effector T cells (Teffs) as evident from effects on anti-CD3/CD28/CD2-induced proliferation (order of susceptibility [IC]: Treg [.5 渭M] > CD4 Teff [2.0 渭M] > CD8 Teff [6.5 渭M]) and acting at the level of AKT and NF-魏B phosphorylation. Moreover, idelalisib treatment of Tregs altered their phenotype and reduced their suppressive function against CD4 and CD8 Teffs. Phenotyping Tregs from CLL patients treated with idelalisib supported our in vitro findings. Collectively, our data show that human Tregs are more dependent on PI3K未-mediated signaling compared with CD4 and CD8 Teffs. This Treg-preferential effect could explain why idelalisib produces adverse autoimmune effects by breaking Treg-mediated tolerance. However, balancing effects on Treg sensitivity versus CD8 Teff insensitivity to idelalisib could still potentially be exploited to enhance inherent antitumor immune responses in patients.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 30692213 2019

Open Access
Eckersley-Maslin M, Alda-Catalinas C, Blotenburg M, Kreibich E, Krueger C, Reik W Epigenetics

The molecular regulation of zygotic genome activation (ZGA) in mammals remains an exciting area of research. Primed mouse embryonic stem cells contain a rare subset of "2C-like" cells that are epigenetically and transcriptionally similar to the two-cell embryo and thus represent an in vitro approximation for studying ZGA transcription regulation. Recently, the transcription factor Dux, expressed in the minor wave of ZGA, was described to activate many downstream ZGA transcripts. However, it remains unknown what upstream maternal factors initiate ZGA in either a Dux-dependent or Dux-independent manner. Here we performed a candidate-based overexpression screen, identifying, among others, developmental pluripotency-associated 2 (Dppa2) and Dppa4 as positive regulators of 2C-like cells and transcription of ZGA genes. In the germline, promoter DNA demethylation coincides with expression of Dppa2 and Dppa4, which remain expressed until embryonic day 7.5 (E7.5), when their promoters are remethylated. Furthermore, Dppa2 and Dppa4 are also expressed during induced pluripotent stem cell (iPSC) reprogramming at the time that 2C-like transcription transiently peaks. Through a combination of overexpression, knockdown, knockout, and rescue experiments together with transcriptional analyses, we show that Dppa2 and Dppa4 directly regulate the 2C-like cell population and associated transcripts, including Dux and the Zscan4 cluster. Importantly, we teased apart the molecular hierarchy in which the 2C-like transcriptional program is initiated and stabilized. Dppa2 and Dppa4 require Dux to initiate 2C-like transcription, suggesting that they act upstream by directly regulating Dux. Supporting this, ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that Dppa2 and Dppa4 bind to the Dux promoter and gene body and drive its expression. Zscan4c is also able to induce 2C-like cells in wild-type cells but, in contrast to Dux, can no longer do so in Dppa2/4 double-knockout cells, suggesting that it may act to stabilize rather than drive the transcriptional network. Our findings suggest a model in which Dppa2/4 binding to the Dux promoter leads to Dux up-regulation and activation of the 2C-like transcriptional program, which is subsequently reinforced by Zscan4c.

+view abstract Genes & development, PMID: 30692203 2019

Open Access
Messmer T, von Meyenn F, Savino A, Santos F, Mohammed H, Lun ATL, Marioni JC, Reik W Epigenetics

Conventional human embryonic stem cells are considered to be primed pluripotent but can be induced to enter a naive state. However, the transcriptional features associated with naive and primed pluripotency are still not fully understood. Here we used single-cell RNA sequencing to characterize the differences between these conditions. We observed that both naive and primed populations were mostly homogeneous with no clear lineage-related structure and identified an intermediate subpopulation of naive cells with primed-like expression. We found that the naive-primed pluripotency axis is preserved across species, although the timing of the transition to a primed state is species specific. We also identified markers for distinguishing human naive and primed pluripotency as well as strong co-regulatory relationships between lineage markers and epigenetic regulators that were exclusive to naive cells. Our data provide valuable insights into the transcriptional landscape of human pluripotency at a cellular and genome-wide resolution.

+view abstract Cell reports, PMID: 30673604 2019

Open Access
Qureshi MS, Alsughayyir J, Chhabra M, Ali JM, Goddard MJ, Devine C, Conlon TM, Linterman MA, Motallebzadeh R, Pettigrew GJ Immunology

This data is related to the research article entitled "Germinal center humoral autoimmunity independently mediates progression of allograft vasculopathy" (Harper et al., 2016) [2]. The data presented here focuses on the humoral autoimmune response triggered by transferred allogeneic CD4 T cells and includes details on: (a) the recipient splenic germinal center (GC) response; (b) augmentation of humoral autoimmunity and accelerated heart allograft rejection following transplantation from donors primed against recipient; (c) flow cytometric analysis of donor and recipient CD4 T cells for signature markers of T follicular helper cell differentiation; (d) donor endothelial cell migration in response to column purified autoantibody from recipient sera; (e) analysis of development of humoral responses in recipients following adoptive transfer of donor CD4 T cells and; (f) the development of humoral autoimmunity in mixed haematopoietic chimeric mice.

+view abstract Data in brief, PMID: 30671513 2019

Open Access
Zhuang X, Magri A, Hill M, Lai AG, Kumar A, Rambhatla SB, Donald CL, Lopez-Clavijo AF, Rudge S, Pinnick K, Chang WH, Wing PAC, Brown R, Qin X, Simmonds P, Baumert TF, Ray D, Loudon A, Balfe P, Wakelam M, Butterworth S, Kohl A, Jopling CL, Zitzmann N, McKeating JA Signalling

The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERB伪 influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways. This study highlights a role for the circadian clock component REV-ERB伪 in regulating flavivirus replication.

+view abstract Nature communications, PMID: 30670689 2019

Open Access
Liu M, O'Connor RS, Trefely S, Graham K, Snyder NW, Beatty GL Epigenetics

Macrophages enforce antitumor immunity by engulfing and killing tumor cells. Although these functions are determined by a balance of stimulatory and inhibitory signals, the role of macrophage metabolism is unknown. Here, we study the capacity of macrophages to circumvent inhibitory activity mediated by CD47 on cancer cells. We show that stimulation with a CpG oligodeoxynucleotide, a Toll-like receptor 9 agonist, evokes changes in the central carbon metabolism of macrophages that enable antitumor activity, including engulfment of CD47 cancer cells. CpG activation engenders a metabolic state that requires fatty acid oxidation and shunting of tricarboxylic acid cycle intermediates for de novo lipid biosynthesis. This integration of metabolic inputs is underpinned by carnitine palmitoyltransferase 1A and adenosine tri-phosphate citrate lyase, which, together, impart macrophages with antitumor potential capable of overcoming inhibitory CD47 on cancer cells. Our findings identify central carbon metabolism to be a novel determinant and potential therapeutic target for stimulating antitumor activity by macrophages.

+view abstract Nature immunology, PMID: 30664738

Florens MV, Van Wanrooy S, Dooley J, Aguilera-Lizarraga J, Vanbrabant W, Wouters MM, Van Oudenhove L, Peetermans WE, Liston A, Boeckxstaens GE Immunology

The role of persistent immune activation in postinfectious irritable bowel syndrome (PI-IBS) remains controversial. Here, we prospectively studied healthy subjects traveling to destinations with a high-risk to develop infectious gastroenteritis (IGE) in order to identify immune-mediated mechanisms and risk factors of PI-IBS.

+view abstract Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society, PMID: 30657233 2019

Open Access
Oberacker P, Stepper P, Bond DM, H枚hn S, Focken J, Meyer V, Schelle L, Sugrue VJ, Jeunen GJ, Moser T, Hore SR, von Meyenn F, Hipp K, Hore TA, Jurkowski TP Epigenetics

Current molecular biology laboratories rely heavily on the purification and manipulation of nucleic acids. Yet, commonly used centrifuge- and column-based protocols require specialised equipment, often use toxic reagents, and are not economically scalable or practical to use in a high-throughput manner. Although it has been known for some time that magnetic beads can provide an elegant answer to these issues, the development of open-source protocols based on beads has been limited. In this article, we provide step-by-step instructions for an easy synthesis of functionalised magnetic beads, and detailed protocols for their use in the high-throughput purification of plasmids, genomic DNA, RNA and total nucleic acid (TNA) from a range of bacterial, animal, plant, environmental and synthetic sources. We also provide a bead-based protocol for bisulfite conversion and size selection of DNA and RNA fragments. Comparison to other methods highlights the capability, versatility, and extreme cost-effectiveness of using magnetic beads. These open-source protocols and the associated webpage (https://bomb.bio) can serve as a platform for further protocol customisation and community engagement.

+view abstract PLoS biology, PMID: 30629605 2019

Open Access
Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, Egolf S, Sela Y, Trizzino M, Gardini A, Garcia BA, Snyder NW, Stanger BZ, Wellen KE Epigenetics

Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in -mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways...

+view abstract Cancer discovery, PMID: 30626590

Open Access
O'Donnell VB, Dennis EA, Wakelam MJO, Subramaniam S Signalling

Lipids are increasingly recognized as dynamic, critical metabolites affecting human physiology and pathophysiology. LIPID MAPS is a free resource dedicated to serving the lipid research community.

+view abstract Science signaling, PMID: 30622195 2019

Jacquin E, Fletcher K, Florey O Signalling

Monitoring of ATG8 proteins by western blotting and immunofluorescence microscopy are the most common methods to monitor the autophagy pathway. However, it has recently been shown that ATG8 proteins can be lipidated to non-autophagosome, single-membrane compartments through a noncanonical autophagy pathway. This is commonly found to occur during macro-endocytic processes such as phagocytosis, where it has been termed LC3-associated phagocytosis, and upon lysosomotropic drug treatment. Therefore, care is required when interpreting data based on ATG8 in order to conclude whether a signal relates to the canonical or noncanonical pathway. Here we provide methods to monitor noncanonical autophagy through fluorescence microscopy.

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 30610705 2019

Open Access
Gdula MR, Nesterova TB, Pintacuda G, Godwin J, Zhan Y, Ozadam H, McClellan M, Moralli D, Krueger F, Green CM, Reik W, Kriaucionis S, Heard E, Dekker J, Brockdorff N Epigenetics

The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi.

+view abstract Nature communications, PMID: 30604745 2019

Open Access
Hey F, Andreadi C, Noble C, Patel B, Jin H, Kamata T, Straatman K, Luo J, Balmanno K, Jones DTW, Collins VP, Cook SJ, Caunt CJ, Pritchard C Signalling

BRAF is a cytoplasmic protein kinase, which activates the MEK-ERK signalling pathway. Deregulation of the pathway is associated with the presence of mutations in human cancer, the most common being , although structural rearrangements, which remove N-terminal regulatory sequences, have also been reported. RAF-MEK-ERK signalling is normally thought to occur in the cytoplasm of the cell. However, in an investigation of BRAF localisation using fluorescence microscopy combined with subcellular fractionation of Green Fluorescent Protein (GFP)-tagged proteins expressed in NIH3T3 cells, surprisingly, we detected N-terminally truncated BRAF (螖BRAF) in both nuclear and cytoplasmic compartments. In contrast, 螖CRAF and full-length, wild-type BRAF (BRAF) were detected at lower levels in the nucleus while full-length BRAF was virtually excluded from this compartment. Similar results were obtained using 螖BRAF tagged with the hormone-binding domain of the oestrogen receptor (hbER) and with the KIAA1549-螖BRAF translocation mutant found in human pilocytic astrocytomas. Here we show that GFP-螖BRAF nuclear translocation does not involve a canonical Nuclear Localisation Signal (NLS), but is suppressed by N-terminal sequences. Nuclear GFP-螖BRAF retains MEK/ERK activating potential and is associated with the accumulation of phosphorylated MEK and ERK in the nucleus. In contrast, full-length GFP-BRAF and GFP-BRAF are associated with the accumulation of phosphorylated ERK but not phosphorylated MEK in the nucleus. These data have implications for cancers bearing single nucleotide variants or N-terminal deleted structural variants of .

+view abstract Heliyon, PMID: 30603699 2018

Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP, Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, Bartlett DA, Zhao PA, Washburn BK, Nora EP, Kraft K, Mundlos S, Bruneau BG, Ljungman M, Fraser P, Ay F, Gilbert DM

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the聽necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.

+view abstract Cell, PMID: 30595451 2018

Open Access
Huber K, Hofer DC, Trefely S, Pelzmann HJ, Madreiter-Sokolowski C, Duta-Mare M, Schlager S, Trausinger G, Stryeck S, Graier WF, Kolb D, Magnes C, Snyder NW, Prokesch A, Kratky D, Madl T, Wellen KE, Bogner-Strauss JG Epigenetics

The discovery of significant amounts of metabolically active brown adipose tissue (BAT) in adult humans renders it a promising target for anti-obesity therapies by inducing weight loss through increased energy expenditure. The components of the N-acetylaspartate (NAA) pathway are highly abundant in BAT. Aspartate N-acetyltransferase (Asp-NAT, encoded by Nat8l) synthesizes NAA from acetyl-CoA and aspartate and increases energy expenditure in brown adipocytes. However, the exact mechanism how the NAA pathway contributes to accelerated mobilization and oxidation of lipids and the physiological regulation of the NAA pathway remained elusive. Here, we demonstrate that the expression of NAA pathway genes corresponds to nutrient availability and specifically responds to changes in exogenous glucose. NAA is preferentially produced from glucose-derived acetyl-CoA and aspartate and its concentration increases during adipogenesis. Overexpression of Nat8l drains glucose-derived acetyl-CoA into the NAA pool at the expense of cellular lipids and certain amino acids. Mechanistically, we elucidated that a combined activation of neutral and lysosomal (acid) lipolysis is responsible for the increased lipid degradation. Specifically, translocation of the transcription factor EB to the nucleus activates the biosynthesis of autophagosomes and lysosomes. Lipid degradation within lysosomes accompanied by adipose triglyceride lipase-mediated lipolysis delivers fatty acids for the support of elevated mitochondrial respiration. Together, our data suggest a crucial role of the NAA pathway in energy metabolism and metabolic adaptation in BAT.

+view abstract Biochimica et biophysica acta. Molecular cell research, PMID: 30595160

Humblet-Baron S, Franckaert D, Dooley J, Ailal F, Bousfiha A, Deswarte C, Oleaga-Quintas C, Casanova JL, Bustamante J, Liston A Immunology

Inflammatory activation of CD8 T cells can, when left unchecked, drive severe immunopathology. Hyperstimulation of CD8 T cells through a broad set of triggering signals can precipitate hemophagocytic lymphohistiocytosis (HLH), a life-threatening systemic inflammatory disorder.

+view abstract The Journal of allergy and clinical immunology, PMID: 30578871 2018

Open Access
Dobnikar L, Taylor AL, Chappell J, Oldach P, Harman JL, Oerton E, Dzierzak E, Bennett MR, Spivakov M, J酶rgensen HF

The original version of this Article contained errors in the author affiliations.Martin R. Bennett was incorrectly associated with Nuclear Dynamics Programme, Babraham 果酱视频, Babraham Research Campus, Cambridge, CB22 3AT, UK. This has now been corrected in both the PDF and HTML versions of the Article.聽Furthermore, Phoebe Oldach was incorrectly associated with Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.This has now been corrected in the HTML version of the Article. The PDF version of the Article was correct at the time of publication.

+view abstract Nature communications, PMID: 30559342 2018

Open Access
Schlenner S, Pasciuto E, Lagou V, Burton O, Prezzemolo T, Junius S, Roca CP, Seillet C, Louis C, Dooley J, Luong K, Van Nieuwenhove E, Wicks IP, Belz G, Humblet-Baron S, Wouters C, Liston A Immunology

is a key immunological transcription factor, with knockout mice studies identifying functional roles in multiple immune cell types. Despite the importance of NFIL3, little is known about its function in humans.

+view abstract Annals of the rheumatic diseases, PMID: 30552177 2019

Van Horebeek L, Hilven K, Mallants K, Van Nieuwenhuijze A, Kelkka T, Savola P, Mustjoki S, Schlenner SM, Liston A, Dubois B, Goris A Immunology

The role of somatic variants in diseases beyond cancer is increasingly being recognized, with potential roles in autoinflammatory and autoimmune diseases. However, as mutation rates and allele fractions are lower, studies in these diseases are substantially less tolerant of false positives and bio-informatics algorithms require high replication rates. We developed a pipeline combining two variant callers, MuTect2 and VarScan2, with technical filtering and prioritization. Our pipeline detects somatic variants with allele fractions as low as 0.5% and achieves a replication rate >55%. Validation in an independent dataset demonstrates excellent performance (sensitivity >57%, specificity >98%, replication rate >80%). We applied this pipeline to the autoimmune disease multiple sclerosis (MS) as a proof-of-principle. We demonstrate that 60% of MS patients carry 2-10 exonic somatic variants in their peripheral blood T and B cells, with the vast majority (80%) occurring in T cells and variants persisting over time. Synonymous variants significantly co-occur with nonsynonymous variants. Systematic characterization indicates somatic variants are enriched for being novel or very rare in public databases of germline variants and trend towards being more damaging and conserved, as reflected by higher CADD and GERP scores. Our pipeline and proof-of-principle now warrant further investigation of common somatic genetic variation on top of inherited genetic variation in the context of autoimmune disease, where it may offer subtle survival advantages to immune cells and contribute to the capacity of these cells to participate in the autoimmune reaction.

+view abstract Human molecular genetics, PMID: 30541027 2018

Qureshi MS, Alsughayyir J, Chhabra M, Ali JM, Goddard MJ, Devine C, Conlon TM, Linterman MA, Motallebzadeh R, Pettigrew GJ Immunology

The development of humoral autoimmunity following organ transplantation is increasingly recognised, but of uncertain significance. We examine whether autoimmunity contributes independently to allograft rejection. In a MHC class II-mismatched murine model of chronic humoral rejection, we report that effector antinuclear autoantibody responses were initiated upon graft-versus-host allorecognition of recipient B cells by donor CD4 T-cells transferred within heart allografts. Consequently, grafts were rejected more rapidly, and with markedly augmented autoantibody responses, upon transplantation of hearts from donors previously primed against recipient. Nevertheless, rejection was dependent upon recipient T follicular helper (T) cell differentiation and provision of cognate (peptide-specific) help for maintenance as long-lived GC reactions, which diversified to encompass responses against vimentin autoantigen. Heart grafts transplanted into stable donor/recipient mixed haematopoietic chimeras, or from parental strain donors into F1 recipients (neither of which can trigger host adaptive alloimmune responses), nevertheless provoked GC autoimmunity and were rejected chronically, with rejection similarly dependent upon host T cell differentiation. Thus, autoantibody responses contribute independently of host adaptive alloimmunity to graft rejection, but require host T cell differentiation to maintain long-lived GC responses. The demonstration that one population of helper CD4 T-cells initiates humoral autoimmunity, but that a second population of T cells is required for its maintenance as a GC reaction, has important implications for how autoimmune-related phenomena manifest.

+view abstract Journal of autoimmunity, PMID: 30528910 2018

Open Access
Bye-A-Jee H, Pugazhendhi D, Woodhouse S, Brien P, Watson R, Turner M, Pell J Immunology

Members of the ZFP36 family of RNA-binding proteins regulate gene expression post-transcriptionally by binding to AU-rich elements in the 3'UTR of mRNA and stimulating mRNA degradation. The proteins within this family target different transcripts in different tissues. In particular, ZFP36 targets myogenic transcripts and may have a role in adult muscle stem cell quiescence. Our study examined the requirement of ZFP36L1 and ZFP36L2 in adult muscle cell fate regulation.

+view abstract Skeletal muscle, PMID: 30526691 2018

Open Access
Pettinati I, Grzechnik P, Ribeiro de Almeida C, Brem J, McDonough MA, Dhir S, Proudfoot NJ, Schofield CJ Immunology

Replication-dependent (RD) core histone mRNA produced during S-phase is the only known metazoan protein-coding mRNA presenting a 3' stem-loop instead of the otherwise universal polyA tail. A metallo 尾-lactamase (MBL) fold enzyme, cleavage and polyadenylation specificity factor 73 (CPSF73), is proposed to be the sole endonuclease responsible for 3' end processing of both mRNA classes. We report cellular, genetic, biochemical, substrate selectivity, and crystallographic studies providing evidence that an additional endoribonuclease, MBL domain containing protein 1 (MBLAC1), is selective for 3' processing of RD histone pre-mRNA during the S-phase of the cell cycle. Depletion of MBLAC1 in cells significantly affects cell cycle progression thus identifying MBLAC1 as a new type of S-phase-specific cancer target.

+view abstract eLife, PMID: 30507380 2018